Recitation 6

October 1, 2015

Problem 1. Put the two vectors into a matrix and row reduce it. You get

 $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Since every column is pivotal, the two vectors are independent, and so they form a basis of \mathbb{R}^2 . To find coordinates of $x = \begin{bmatrix} -2\\5 \end{bmatrix}$ is the basis $\mathcal{B} = \{v_1, v_2\}$ you need to find scalars c_1, c_2 such that $x = c_1v_1 + c_2v_2$. So you need to solve the system $\begin{bmatrix} 2 & 1\\1 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} -2\\5 \end{bmatrix}$. Then the solution is $\begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 2 & 1\\1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -2\\5 \end{bmatrix} = \frac{1}{2 \cdot 1 - 1 \cdot 1} \begin{bmatrix} 1 & -1\\-1 & 2 \end{bmatrix} \begin{bmatrix} -2\\5 \end{bmatrix} = \begin{bmatrix} -7\\12 \end{bmatrix}$

Problem 2. Polynomials $\{1 + t, t^2 - 1, t + t^2 - 1\}$ can be represented (relative to the basis $\{1, t, t^2\}$) by the columns $[1, 1, 0]^T$, $[-1, 0, -1]^T$ and $[-1, 1, 1]^T$ respectively. So to figure out if they form a basis, we need to row reduce the matrix

$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

You row reduce, see that there are 3 pivots, so the columns are linearly independent. Since \mathbb{P}_2 is 3-dimensional, the columns for a basis.

The polynomial $3t^2$ is represented by the column $[0,0,3]^T$. To find its coordinates in the basis $\{1+t, t^2-1, t+t^2-1\}$ we need to solve the system

$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Then the solution is $[3, 6, -3]^T$.

Problem 3. The vector space V can be described as the null space of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

Since there are two pivots, the null space of that matrix is 4 - 2 = 2 dimensional. The two vectors

$$v_1 = \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}$$

form a basis of the space V.

Problem 4. Dimension of the column space is the rank, and so using the rank-nullity formula we get rank(A) = 9 - 8 = 1.

Problem 5. If A is 5×8 , it defines a transformation $\mathbb{R}^8 \to \mathbb{R}^5$. If dim Nul(A) = 2, nullity-rank formaula gives that dim Col(A) = 8 - 2 = 6. However, Col(A) is a subspace of \mathbb{R}^5 , so it can't be more than 5-dimensional.

Problem 6. The spaces Col(A) and Row(A) are different in general. Take, for example, matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

However, the dimensions of these spaces are always the same.

Problem 7. In \mathbb{R}^n : Row(A), Nul(A), $Col(A^T)$. In \mathbb{R}^m : Col(A), $Row(A^T)$, $Nul(A^T)$. **Problem 8.** Row reducing gives

$$\begin{bmatrix} 1 & a \\ a & a+6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & a \\ 0 & -a^2+a+6 \end{bmatrix}$$

The second column will be pivotal if and only if $-a^2 + a + 6 \neq 0$, i.e. $a \neq 3$ and $a \neq -2$.

Problem 9. Variables x_1, x_3 are basic, variable x_2 is free. There are two basic variables (two pivots) so rank(A) = 2. Solving the system, we have $x_3 = 2, x_1 = -3x_2 + 2x_3 - 1 = 3 - 3x_2$, and x_2 is free. Since the second column is a multiple of the first one in the reduced matrix, this was also the case in the original matrix. Therefore, the second column of the original matrix is

Problem 10. Row reduce the matrix, see that there are 3 pivots, and so the matrix is invertible. If you have are solving the system Ax = b and you know A^{-1} , then $x = A^{-1}b$ is the solution (notice the order of multiplication).

To find the inverse of A, need to put A into the augmented matrix [A|I] and row reduce to the max. The inverse turns out to be

$$A^{-1} = \begin{bmatrix} 5/2 & -5 & -17/4 \\ 1/2 & -2 & -7/4 \\ -1/2 & 1 & 3/4 \end{bmatrix}$$

Problem 11. You need to figure out if there are two scalars c_1, c_2 such that

$$\begin{bmatrix} -1\\3\\2 \end{bmatrix} = c_1 \begin{bmatrix} 5\\-5\\4 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\2 \end{bmatrix}$$

So you need to see if the system

$$\begin{bmatrix} 5 & 1 & |-1 \\ -5 & 1 & | & 3 \\ 4 & 2 & | & 2 \end{bmatrix}$$

is consistent. Row reduce, every column turns out to be pivotal. Since there is a pivot in the last column of the augmented matrix, the system is inconsistent, and so b is not in the Col(A).